IOSR Journal of Electronics and Communication Engineering (IOSR-JECE)
e-1SSN: 2278-2834,p- ISSN: 2278-8735.Volume 11, Issue 6, Ver. Il (Nov.-Dec .2016), PP 46-52
www.iosrjournals.org

Coding for Pseudo Device by Linux Character Device Driver

Navneet Kr. Pandey", Prof. Prabhakar Dubey® and Saurabh Bhutani®:
(M Tech Scholar Electronics Dept, RRIMT / Aktu, India)
%(Prof. ECE,RRIMT/ Aktu,India)
%(M Tech Scholar Electronics Dept, RRIMT / Aktu, India)

Abstract: Linux is a free Operating system and have major advantage that their internal are open for all to
view. Usually OS (Operating system) has a dark and mysterious area whose code is restricted to small number
of programmer’s. Linux helped to democratize OS. Device Driver provide gateway to approach the code
without being overwhelmed by complexity. To interact with hardware devices Device Driver is the most
important software of OS. DD (DeviceDriver) must be reliable and efficient because any wrong operation can
fatal system error and hardware performance depend on device driver.

I. Introduction

The DD is Integral Unit of OS and act as translator between Hardware device and the application of OS
that uses it. Device Driver are the distinct BLACK BOX that make particular piece of hardware respond to well
defined internal programming interface , they hide completely the details of how the device work. This
programming interface is such that the driver can built separately from rest of the kernel and “plugged in” at the
runtime when needed. This modularity make linux driver easy to write. LKM (Loadable kernel module) which
facilitate to insert piece of code along with running module into the kernel at run time. Device Driver is a
program that control particular type of device that is attached to our computer. There are device driver for
printer/display/CD rom reader/diskette driver and so on. When we buy an OS many device driver are built into
the product. However if we buy a new type of device that OS didn’t recognize we will have to install new
device driver. A DD is essentially convert the more general input, output instruction of OS to manage that
device type can understand.

Pre-Requisite-

In order to develop Linux Device driver it is necessary to understand following

e C Programming: Deep knowledge of C programming is necessary specially function call, Structure, bit
manipulation function and dynamic memory allocation

e Microprocessor programming: knowledge of tool chain and how microcomputer work internally, memory
addressing and interrupt etc. All these concept is necessary to an assembler programmer.

Before writing a device driver programming it’s important to make distinction between “userspace” & “kernel
space”.

Userspace: End user program like unix shell or other GUI

based application (kedit) are the part user space. Obviously these application need to interact with system
hardware. However they don’t perform directly but through kernel support function.

Kernal space: The kernel i.e. the core of OS and in particular its Device Driver form a bridge or interface
between end user programmer and hardware.

Any subroutine or function forming part of the kernel are considered to be kernel space.

USER SPACE (application software)

KERNAL SPACE (module & Driver)

HARDWARE

DOI: 10.9790/2834-1106024652 www.iosrjournals.org 46 | Page

Coding for Pseudo Device by Linux Character Device Driver

Classes of Device & Module: Linux classify the module into three fundamental categories which are

¢ CHAR MODULE: the device which can be accessed by stream of bytes (like a file). Such driver usually
contain open, close, read and write system call.

e BLOCK MODULE: The device that can be accessed by filesystem. This module can handle 1/O operation
that transfer one or whole more blocks, which are usually 512 bytes in length.

e NETWORK INTERFACE: device that able to exchange data with other host.

Split view of kernel with process management, memory management, filesystem and process control along with
drivers are as follows

The System Call Interface

P

Process Memory Filesystems Device Networking
management management control

Kernel
subsystems

Concurrency, Virtual Files and dirs: Ttys& " Features
multitasking memory theVFs device access Connedtivty — piementey

filesystem Character Network
4 ﬂldg Memory types devices subsystem
lependent manager

p(ade s oo Software
support

Block devices F drivers

oo oo oo

e

Hardware

U Memory Disks & CDs Consoles, Network
ete. Interfaces

D features implemented as modules

Figure 1.Split View of Kernel [1]

Loading and Unloading Device Driver
e INSMOD command is used to load the module into the running kernel. The river have to be in the form of
module to be a part of kernel.
e RMMOD command is used to remove module from the kernel .
Software requirement and specification: Pentium machine or above
Linux 2.6.32-71.elf Environment/ any linux OS platform32 bit processor
e The coding contain implementation of Device driver for registering any device on kernel.
e We should properly compile the device driver code as it work along with the kernel any error may corrupt
the OS.
Appendix Al:
Source code: FirstModule.c
#include<linux/init.n>
#include<linix/module.h>
Static intnkp_init(void)
{
/lcode
Printk(KERN_INFO “HELLO WORLD..\n");
return(0);

Static void nkp_exit(void)
{
/lcode
Printk(KERN INFO “exiting from the MODULE..\n");
return(0);
}
module_init(nkp_init);
module_exit(nkp_exit);

DOI: 10.9790/2834-1106024652 www.iosrjournals.org 47 | Page

Coding for Pseudo Device by Linux Character Device Driver

MODULE_LISCENSE(“Dual BSD/GPL);
MODULE_AUTHOR(“NAVNEET PANDEY”);

MODULE DESCRIPTION(“First Kernel Module..”);

Steps to execute:

1. Create a text file write a module code and name it as FirstModule.c
2. Create another text file with single line as shown under a name “MAKEFILE”
Obj-m :-FirstMoodule.o

3. To build our module/driverexecute following command..

make —c /lib/module/’uname-r’/uild M="pwd’ modules

Many files will be created and t will be visible by using command ‘Is’
4.#su

5. To insert and load module “FirstModule.ko type
#insmodFirstModule.ko

6. Check whether our module is insered or loaded in the kernel by..
#lsmod | head -5 (modue name is seen)

7. To see the driver’s loaded printk() message , use ..

#dmesg | tail -5 (display message)

8. To remove /unload “FirstModule.ko” module..
#rmmodFirstModule.ko (module name will be disappeared)

9. To go back user login type

exit

10. Toremove all files type..

make —c /lib/module/’uname-r’/uild M="pwd’ clean

Appendix A2:
Source code: Chardev.c
include<linux/module.h>
#include<linux/version.h>
#include<linux/kernel.h>
#include<linux/types.h>
#include<linux/kdev_t.h>
#include<linux/fs.h>
#include<linux/device.h>
#include<linux/cdev.h>
#include<asm/uaccess.h>
#include<linux/sched.h>
/lglobal variable declaration
static dev_t first;
staticstructcdevmy_char_dev;
staticstruct class *my_class_device_ptr;
#define MAXLEN 4000 // correspond to 4k memory page size
static char mybufferfMAXLEN];
/lglobal function declaration
static intnkp_open(structinode *inode_ptr, struct file *file_ptr)
{
/lcode
Printk(“KERN_INFO ”Driver’s is now open() : PID of
process using this device is %d\n”, current->pid);
return(0);
}
Static ssize_tnkp_read(struct file *file_ptr, char_user *buffer , size_tlength,loff t *offset)
{ // variable declartation
intmax_bytes;
intbytes to_read;
int bytes;
/lcode
max_bytes=MAXLEN-*offset;
if(max_bytes>length)
bytes to_read=length;

DOI: 10.9790/2834-1106024652 www.iosrjournals.org 48 | Page

Coding for Pseudo Device by Linux Character Device Driver

else
bytes to_read=max_bytes;
if(bytes_to_read==0)

{

Printk(KERN_INFO “YOU CAN read() DRIVER’S MODULE : EOD (END OF DEVICE) \n)
Return(-ENOSPC); //ERROR NO SPACE

nbytes=bytes to_read-copy_to_user(buffer,my+buffer *offset,bytes to_read);
return(nbytes);

}

staticssize_tnkp_write(struct file *file_ptr, const char _user *buffer,size_tlength,loff t *offset)

/Ivariable declaration

intmax_bytes;

intbytes_to_write;
intnbytes;

/lcode

max_bytes=MAXLEN- *offset;
if(max_bytes>length)

bytes_to_write=length;

else
bytes_to_write=max_bytes;
if(bytes_to_write==0)

{

Printk(KERN_INFO “YOU CAN write() DRIVER’S MODULE : EOD (END OF DEVICE) \n)
return(-ENOSPC); //ERROR NO SPACE
}
nbytes=bytes to_write-copy_from_user(mybuffer+ *offset,buffer,bytes to_write);
*offset="offset+nbytes;

return(nbytes);
staticloff_tnkp_lseek(struct file *file_ptr,loff t offset, int origin)
{

[Ivariable declaration

loff_tnew_pos=0;

/lcode

Switch(origin)

Case 0:
new_pos=offset;
Break;
Case 1:
new_pos=file_ptr->f_pos+offset;
Break;
Case 2:
new_pos=MAXLEN-offset;
Break;
}
if(new_pos>MAXLEN)
new_pos=MAXLEN;
If(new_pos<0)
new_pos=0;
file_ptr->f_pos=new_pos;
return(new_pos);

/I global structure/union/typedef/enum declarations
Static structfile_operationsnkp_fops={.owner=THIS_MODULE,
.open=nkp_open,

DOI: 10.9790/2834-1106024652 www.iosrjournals.org 49 | Page

Coding for Pseudo Device by Linux Character Device Driver

.release=nkp_close,
.read=nkp_read,
.write=nkp_write
lseek=nkp_lseek};

staticint _initnkp_init(void)

/lcode
int major=250; //hard coded : 250 may vary dynamically from system to system and hence we may get 251.
int minor=0; // hard coded.
first=MKDEV(major,minor);

if(alloc_chrdev region(&first,0,1,”NKP”)<0)
return(-1);

if(my_device class ptr=class create(THIS MODULE,”nkp chrdev_class”))== NULL)
{

unregister_chrdev_region(first,1);

return(-1);

}

{ffor linux kernel >2.6.26 :

device create(my_device class ptr, NULL,first, NULL,”’nkp chardev”)

// if used for linuxkernrl< 2.6.26,”warning: too many arguments for format”occurs
if(device_create(my_device class ptr, NULL,first,”nkp chardev”’)==NULL)

class_destroy(my_device_class_ptr);
unregister_chrdev_region(first,1);

return(-1);

}

cdev_init(&my_char_dev,&nkp_fops);
if(cdev_add(&my_char_dev_first,1)==-1)

{

device_destroy(my_device_class_ptr,first);
class_destroy(my_device_class_ptr);
unregister_chrdev_region(first,1);

return(-1);

}

printk(KERN_INFO “Welcome By NKP : Linux Character Device is Successfully registered.\n”);
return(0);

}

staticvoid_exitvdg_exit(void)

{

/I code

cdev_del(&my_char_dev);
device_destroy(my_device_class_ptr,first);
class_destroy(my_device_class_ptr);
unregister_chrdev_region(first,1);

printk(KERN_INFO “GoodBYE By NKP : Linux Character Device Driver is Successfully Unregistered.\n”);
}

module_init(nkp_init);

module_exit(nkp_exit);

MODULE_LICENSE(“GPL”);
MODULE_AUTHOR(“NAVNEET PANDEY™);
MODULE DESCRIPTION(“Linux Character Driver”);

Implementaton:
Layout of Driver- The presently driver/module is to be added running kernel dynamically. After
complilation.ko file created which is actual driver file created by ‘modpost’ by insmodutility

DOI: 10.9790/2834-1106024652 www.iosrjournals.org 50 | Page

Coding for Pseudo Device by Linux Character Device Driver

INSMOD:

e Through this command the module get path in running kernel and initialization of driver is done.
e Following function get active through this

cdev_init()

The functionality of this system call will initialize the character device

module_init()

alloc_chrdev_region()

RMMOD:

e device_destray()

e class_destroy()

e unregister_chrdev_region()

Steps to Insert the Module:

e Create a text file, write a module’s code and name it as “Chardev.c”
e Create anothr text file, type a single line as shown on following line and name it as “Makefile
e 0bj-m :=Chardev.o

e To build our module/driver (Chardev.ko) execute following command ...
e # make —C /lib/modules/ uname —r / build M="pwd’ modules

o #su

To insert/load “Chardev.ko” module ...

insmodChardev.ko

Check whether our device’s device class directory is created or not by ...
Is / sys/class

In the output there is a name “nkp_character class directory.

Read device directory “dev” file ...

cat/sys/class/nkp_chardev_class/nkp_chardev/dev

Output shows our devices <major num,minornum> as 251:0

Even though we specified 250, it is showing 251. Because number 250 may vary from system to system and
may not be allocated dynamically and still we may get 251.

e To cross check our device and its major , minor num, see it in /dev directory

#ls -1 /dev/nkp_chardev

Output shows...

Crw-rw---- 1 root root251 ,0 2016-29-9 15:34 /dev/nkp_chaedev

Where ‘¢’ indicate character type device 251-major, 0- minornumber

Check whether our module is inserted / loaded in kernel by..

#lsmod | head -5

Module name is seen

To see the driver “loaded “ printk() message use ..

#dmesg | tail -5 (display message from /var/log/message

Welcome By NKP: Linux character device is successfully registered .

To perform Iseek(), open (),close(), read(),write()

Mention some kind of ¢ code to check the above defined function the driver module.
Steps to remove a module:

e Toremove /unload “chardev.ko

#rmmodchardev.ko

Check whether our module is removed /unloaded from kernel by ...

Ismod | head-5

Module name should be disappeared.

To see the driver “unloaded * printk() message use ..

#dmesg | tail -5 (display message from /var/log/message)

GoodBYE By NKP: Linux character device is successfully unregistered .

To go back to user login type ..

#exit

To remove all the files created by “makes’s clean” type

make —C /lib/modules/ uname —r / build M="pwd’ clean

t2)

DOI: 10.9790/2834-1106024652 www.iosrjournals.org 51 | Page

Coding for Pseudo Device by Linux Character Device Driver

[16].
[17].

[19].

[20].
[21].

[22].

References
A. Rubini, Linux Device Drivers, O'Reilly &Associates,Sebastopol, Calif., 1998
T. Burke, M.A. Parenti, A. Wojtas. Writing Device Drivers: Tutorial and Reference, Digital Press, Boston,1995.
Linux Operating System Documentation,http://www.sunsite.unc.edu/pub/Linux
Robert Love, Linux Kernel Development, Second Edition, 2005
A. Rubini, “Dynamic Kernels: Modularize Device Drivers,” Linux J.,Issue 23, Mar. 1996,
Y. Zhou, M.S. Li, "Research and implementing of real-time support of Linux kernel", Journal of computer research and
development,VV01.39, No. 4, April 2002.
P. Mantegazza, E. Bianchi, L. Dozio, S. Papachar-alambous, RTAI: Real Time Application Interface,Linux Journal, April 2000.
Chen lijun, "Understanding Linux kernel source code deeply"[M],Beijing: Posts & Telecom Press. 2002.
Linux Kernel http://www.kernel.org.
ELF specifications be downloaded from ftp://sunsite.unc.edu/pub/Linux/GCC/ELF.doc.tar.gz.
Murli. B. A, “Linux Device Driver coding for Pseudo device” , International Journal of computational Engineering Research , Pg
No. 17-29.
M. Spear et al. Solving the starting problem: Device drivers as selfdescribingartifacts. In Eurosys, 2006.
M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy.Recovering device drivers.In OSDI, 2004.
L. Wittie. Laddie: The language for automated device drivers (ver 1). Technical Report 08-2, Bucknell CS-TR, 2008.
A. Silberschatz, P. B. Galvin, and G. Gagne.Operating System Concepts.John Wiley and Sons, eighth edition, 2009.
M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy.Recovering device drivers.In OSDI, 2004.
A. Kadav and M. Swift.Live migration of direct-access devices.Operating Systems Review, 43(3):95-104, 2009.
B. Leslie et al. User-level device drivers: Achieved performance. Jour. Comp. Sci. and Tech., 2005.
Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A tool for finding copy-paste and related bugs in operating system code. In
OSDlI, 2004.
F. M. David et al. CuriOS: Improving reliability through operating system structure. In OSDI, 2008.
D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B. Schneider. Device driver safety through a reference validation
mechanism. In OSDI, 2008.
http://opensourceforu.com/2012/01/device-drivers-partitions-hard-disk/

DOI: 10.9790/2834-1106024652 www.iosrjournals.org 52 | Page

http://opensourceforu.com/2012/01/device-drivers-partitions-hard-disk/

